Гурвич Ю.А.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ УГЛОВОГО УСКОРЕНИЯ ВЫХОДНОГО ВАЛА КАРДАННЫХ ПЕРЕДАЧ В ФУНКЦИИ ДВУХ УГЛОВ

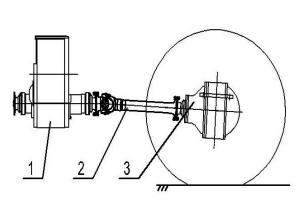
ГУО «Институт пограничной службы Республики Беларусь»

Минск, Беларусь

В данной статье выполнено исследование углового ускорения одно- и двух шарнирной карданной передачи в функции двух углов при переменном угле излома. С угловым ускорением связано возникновение дополнительного крутящего момента на колесах машин в виде периодической и почти гармонической функции. Установлено, по всей видимости, впервые, что этот дополнительный крутящий момент придает вращающемуся колесу ещё и осциплирующее движение относительно его оси вращения. Это негативно отразится на работе многих деталей транспортного средства.

Из теоретической механики [1–2] известно, что основными показателями вращения любого тела, в том числе выходного вала карданной передачи являются его кинематические характеристики: угол поворота, угловая скорость и угловое ускорение. Как известно из литературы [3–7] основным критерием неравномерности вращения любого тела является его угловая скорость, которая оказывает негативное влияние на выходные характеристики трансмиссии и механизмы машин.

При подготовке технических специалистов, занимающихся разработкой и эксплуатацией автомобильной техники, недостаточное внимание в технической литературе и в учебном процессе технических вузов уделяется изучению вопроса, связанного с угловым ускорением выходного вала одно — и двухшарнирной карданной передачи в функции двух углов [1-7].


В данной работе с помощью математического пакета Mathcad выполнено исследование кинематических характеристик одно — и двух шарнирной карданной передачи с переменным углом излома. Основное внимание посвящено изучению углового ускорения, с которым связано возникновение дополнительного крутящего момента на колесах машин. Установлено, по всей видимости, впервые, что этот дополнительный крутящий момент придает вращающемуся колесу ещё и осциллирующее движение относительно его оси вращения. Это негативно отразится на работе многих деталей транспортного средства.

Рассмотрим трансмиссию транспортного средства (рис. 1), где мощность от коробки передач к ведущему мосту передается посредством одношарнирной карданной передачи, которая в процессе движения машины может изменять свое первоначальное положение.

Для одношарнирной карданной передачи (рис. 2) из [1-3] известна зависимость

$$\omega_2 = \omega_1 \cdot \frac{\cos(\alpha)}{1 - \sin^2(\alpha) \cdot \cos^2(\lambda)},\tag{1}$$

где λ — угол поворота ведущего вала; α — угол излома карданного шарнира.

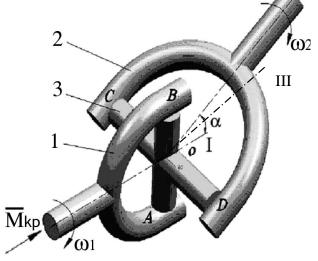


Рис. 1 — Схема установки одношарнирной карданной передачи на транспортном средстве:

1 – коробка переключения передач;

2 – карданный вал;

3 – задний мост с колесами

Рис. 2 — Кинематическая схема карданного шарнира: 1, 2 — вилки; 3 — крестовина; I — ось вращения вилки 1; II — ось вращения вилки 2; α — угол излома между осями I и II; III — новое положение оси вращения вилки 2 при переменном угле α ; ω_1 и ω_2 — угловые скорости ведущего и ведомого валов

В выражении (1) введем замену:

$$K(\alpha, \lambda) = \frac{\cos(\alpha)}{1 - \sin^2(\alpha) \cdot \cos^2(\lambda)}.$$
 (2)

Тогда

$$\omega_2 = \omega_1 \cdot K(\lambda, \alpha) \,. \tag{3}$$

Определим угловое ускорение ведомого вала ε_2 , взяв полную производную по времени от левой и правой частей выражения (3):

$$\varepsilon_2 = \frac{d\omega_2}{dt} = \frac{d\omega_1}{dt} \cdot K(\alpha, \lambda) + \omega_1 \cdot \left(\frac{\partial K(\alpha, \lambda)}{\partial \lambda} \cdot \frac{d\lambda}{dt} + \frac{\partial K(\alpha, \lambda)}{\partial \alpha} \cdot \frac{d\alpha}{dt} \right). \tag{4}$$

Представим выражение (4) в другом виде:

$$\varepsilon_{2} = \frac{d\omega_{2}}{dt} = \varepsilon_{1} \cdot K(\alpha, \lambda) + \omega_{1} \cdot \left(\frac{\partial K(\alpha, \lambda)}{\partial \lambda} \cdot \omega_{1} + \frac{\partial K(\alpha, \lambda)}{\partial \alpha} \cdot \omega_{\alpha} \right), \tag{5}$$

где $\omega_1 = \frac{d\lambda}{dt}$; ε_1 — угловое ускорение входного вала; $\omega_{\alpha} = \frac{d\alpha}{dt}$ — угловая скорость ведомого вала при перемещении оси II в положение III (см. рис. 2).

Для анализа выражения (5) рассмотрим четыре случая.

Первый случай. Угловое ускорение входного вала $\varepsilon_1 = \frac{d\omega_1}{dt} = 0$ (входной вал вращается равномерно), угловая скорость ведомого вала при перемещении оси II в положение III $\omega_{\alpha} = \frac{d\alpha}{dt} = 0$ (угол излома $\alpha = const$, ось II — неподвижна).

Выражение (5) упростится:

$$\varepsilon_2^{(1)} = \omega_1 \left(\frac{\partial K(\alpha, \lambda)}{\partial \lambda} \cdot \frac{d\lambda}{dt} \right) = \omega_1^2 \cdot \frac{\partial K(\alpha, \lambda)}{\partial \lambda} . \tag{6}$$

В выражении (6) введем замены: $k\lambda(\alpha,\lambda)=\frac{\partial K(\alpha,\lambda)}{\partial \lambda}$, $\omega 1=\omega_1$ и $\varepsilon 21(\alpha,\lambda,\omega 1)=\varepsilon_2^{(1)}$.

Тогда $\varepsilon 21(\alpha, \lambda, \omega 1)$ примет вид:

$$\epsilon 21(\alpha,\lambda,\omega 1) := k\lambda(\alpha,\lambda) \cdot \omega 1^2$$

Найдем частную производную $k\lambda(\alpha,\lambda)$:

$$k\lambda(\alpha\,,\lambda) := \frac{\left(-1 + \cos(\alpha)^2\right) \cdot \left(2 \cdot \cos(\alpha) \cdot \cos(\lambda) \cdot \sin(\lambda)\right)}{1 - 2 \cdot \cos(\lambda)^2 + 2 \cdot \cos(\lambda)^2 \cdot \cos(\alpha)^2 + \cos(\lambda)^4 - 2 \cdot \cos(\lambda)^4 \cdot \cos(\alpha)^2 + \cos(\lambda)^4 \cdot \cos(\alpha)^4}$$

Построим графики зависимости углового ускорения $\varepsilon^{21}(\alpha,\lambda,\omega 1)$ в функции угла поворота ведущего вала λ при различных значениях угла излома α ($\omega_1 = 30\pi \ pa\partial/c$)

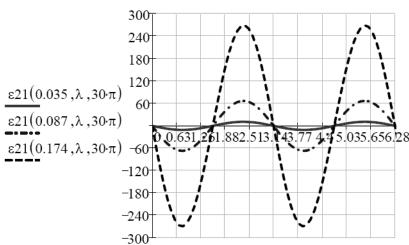


Рис. 3 — График зависимости углового ускорения ϵ_{21} в функции угла поворота ведущего вала λ при различных значениях угла излома: α =0,035; 0,087; 0,174 рад (2°; 5°; 10°)

Второй случай. Угловое ускорение входного вала $\varepsilon_1 = \frac{d\omega_1}{dt} = 0$, угловая скорость ведомого вала при перемещении оси II в положение III $\omega_{\alpha} = \frac{d\alpha}{dt} \neq 0$ (при переменном угле α ось II — подвижна).

Выражение (5) примет вид:

$$\varepsilon_{2}^{(2)} = \omega_{l} \left(\frac{\partial K(\alpha, \lambda)}{\partial \lambda} \cdot \frac{d\lambda}{dt} + \frac{\partial K(\alpha, \lambda)}{\partial \alpha} \cdot \frac{d\alpha}{dt} \right) = \omega_{l}^{2} \cdot \frac{\partial K(\alpha, \lambda)}{\partial \lambda} + \omega_{l} \cdot \frac{\partial K(\alpha, \lambda)}{\partial \alpha} \cdot \omega_{\alpha}. \tag{7}$$

В выражении (7) введем замены:

$$k\alpha(\alpha,\lambda) = \frac{\partial K(\alpha,\lambda)}{\partial \alpha}, \quad \varepsilon 22\alpha = k\alpha(\alpha,\lambda) \cdot \omega 1 \cdot \omega_{\alpha}, \quad \varepsilon 22\lambda = k\lambda(\alpha,\lambda) \cdot (\omega 1)^{2}, \quad \varepsilon 22(\alpha,\lambda) = \varepsilon_{2}^{(2)}.$$

Тогда $\varepsilon 22(\alpha,\lambda)$ равно:

$$\varepsilon 22\lambda(\alpha,\lambda) := \varepsilon 22\alpha(\alpha,\lambda) + \varepsilon 22\lambda(\alpha,\lambda)$$
.

Найдем частную производную $k\alpha(\alpha,\lambda)$:

$$\ker(\alpha\,,\lambda) := \frac{\left(-1 + \cos(\lambda)^2 + \cos(\lambda)^2 \cdot \cos(\alpha)^2\right) \cdot \sin(\alpha)}{1 - 2 \cdot \cos(\lambda)^2 + 2 \cdot \cos(\lambda)^2 \cdot \cos(\alpha)^2 + \cos(\lambda)^4 - 2 \cdot \cos(\lambda)^4 \cdot \cos(\alpha)^2 + \cos(\lambda)^4 \cdot \cos(\alpha)^4}$$
 Построим графики функций $\varepsilon 22\alpha(\alpha,\lambda)$ и $\varepsilon 22(\alpha,\lambda)$ при $\omega_1 \cdot \omega_\alpha \cong \pi^2$

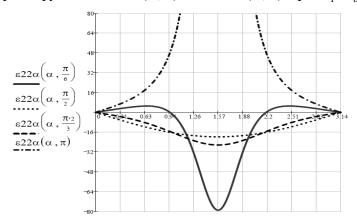


Рис. 4 — График зависимости углового ускорения ε22α в функции угла излома α при различных значениях угла λ: $\lambda = \frac{\pi}{6}$; $\frac{\pi}{2}$; $\frac{2\pi}{3}$; π рад

Третий случай. Угловое ускорение входного вала $\varepsilon_1 = \frac{d\omega_1}{dt} \neq 0$, угловая скорость ведомого вала при перемещении оси II в положение III $\omega_\alpha = \frac{d\alpha}{dt} = 0$ (угол излома $\alpha = const$, ось II – неподвижна).

Выражение (5) примет вид:

$$\varepsilon_2^{(3)} = \frac{d\omega_1}{dt} \cdot K(\alpha, \lambda) + \omega_1^2 \cdot \frac{\partial K(\alpha, \lambda)}{\partial \lambda}. \tag{8}$$

Тогда $\varepsilon 23(\alpha,\lambda)$ равно: $\varepsilon 23(\alpha,\lambda) := \varepsilon 1 \cdot k(\alpha,\lambda) + \omega 1^2 \cdot k\lambda(\alpha,\lambda)$

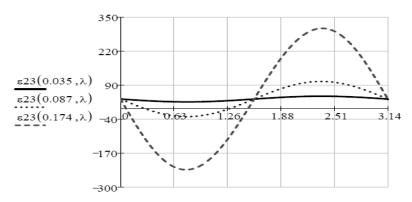


Рис. 5 — График зависимости углового ускорения ε_{23} в функции угла поворота ведущего вала при различных значениях угла излома: 0,035; 0,087; 0,174 рад (2°; 5°; 10°)

Четвертый случай. Угловое ускорение входного вала $\varepsilon_1 = \frac{d\omega_1}{dt} \neq 0$, угловая скорость ведомого вала при перемещении оси II в положение III $\omega_\alpha = \frac{d\alpha}{dt} \neq 0$ (при переменном угле α ось II - подвижна).

Выражение (5) примет вид:

$$\varepsilon_{2}^{(4)} = \frac{d\omega_{1}}{dt} \cdot K(\alpha, \lambda) + \omega_{1}^{2} \cdot \frac{\partial K(\alpha, \lambda)}{\partial \lambda} + \frac{\partial K(\alpha, \lambda)}{\partial \alpha} \cdot \frac{d\alpha}{dt} \cdot \omega_{1}. \tag{9}$$

Тогда $\varepsilon 24(\alpha,\lambda)$ равно: $\varepsilon 24(\alpha,\lambda) := \varepsilon 1 \cdot k(\alpha,\lambda) + \omega 1^2 \cdot k\lambda(\alpha,\lambda) + \omega\alpha \cdot \omega 1 \cdot k\alpha(\alpha,\lambda)$

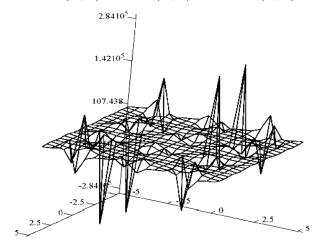


Рис. $6 - \Gamma$ рафик зависимости углового ускорения $\epsilon 24$ в функции двух углов: α и λ

Знание углового ускорения ε_2 позволит впервые учесть влияние дополнительного момента $M_1 = M_1(\alpha)$ в функции угла излома α , действующего на колеса машины и равного произведению осевого момента инерции колес с карданом относительно оси вращения колес I_x на угловое ускорение ε_2

$$M_1(\alpha) = I_x \varepsilon_2$$
.

В результате суммарный момент М1 на колесе примет вид (10):

$$M1 = M_{KD} + M_1(\alpha), \tag{10}$$

где $M_{\kappa p}$ – крутящий момент на входном валу вилки кардана (см. рис. 2).

Дополнительный момент M_1 придает вращающемуся колесу ещё и осциллирующее движение относительно его оси вращения, что негативно отразится на работе многих деталей колесного транспортного средства.

Оценим влияние дополнительного момента $M_1(\alpha)$ на суммарный момент M1 по величине относительного изменения η (11) в четырех случаях (формулы (6)-(9)) автомобиля БелАЗ-75800, принимая угол излома $\alpha = \frac{\pi}{90}$ рад, что соответствует 2° :

$$\eta = \frac{M_1(\alpha)}{M\kappa p} \cdot 100\% . \tag{11}$$

БелАЗ-75800: число оборотов ведущего вала для 2-ой передачи – N=500 об/мин; крутящий момент на ведущем валу – $M_{\kappa p}=6600$ $H.m^2$; момент инерции заднего моста – $I_X=100$ к $\Gamma.m^2$; время поворота тележки сочлененной конструкции на угол $\alpha=45^\circ$ при

скорости движения автомобиля v=10 $\kappa m/u$ равно t=10 c. Тогда $\omega_1=52$ $pa\partial/c$, $\omega_\alpha=\pi/40$ $pa\partial/c$, $\varepsilon_1=1,1$ $pa\partial/c^2$.

Результаты расчетов η для четырех значений углового ускорения $\varepsilon_2^{(i)}$ (i=1,...,4) сведены в таблицу.

i	$arepsilon_2, \ pa\partial/c^2$	α, град	$M_{\kappa p}, \ H. \mathcal{M}$	$I_{ m X},$ $\kappa arGamma \kappa^2$	$\omega_{_{\! 1}}$, $pa\partial/c$	M ₁ (α), <i>H.</i> м	η, %
1	3,26	2	6600	100	52	326	4,93
2	3,27	2	6600	100	52	327	4,95
3	4,36	2	6600	100	52	436	6,60
4	4,37	2	6600	100	52	437	6,62

Для скоростных карданных передач величины $M_1(\alpha)$ и η будут намного больше тех результатов, которые приведены в таблице.

Рассмотрим карданную передачу с двумя шарнирами на рис. 7-9.

В [3] приведено соотношение (12) для определения угла поворота ведомого вала в двухшарнирной карданной передаче:

$$\beta' = arctag\left(\frac{\cos\gamma_2 \cdot tg\alpha(1 + tg^2\psi)}{\cos\gamma_1 - tg\alpha \cdot tg\psi + \cos^2\gamma_2 \cdot tg\psi(tg\alpha + tg\psi \cdot \cos\gamma_1)}\right),\tag{12}$$

где α — угол поворота вала I; β — угол поворота вала III; γ_1 — угол излома вала I; γ_2 — угол излома вала III; ψ — угол между вилками 2 и 1', расположенными на валу II (см. рисунок 9).

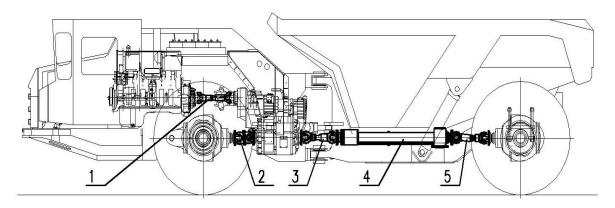


Рис. 7 — Подземный самосвал БелАЗ-75800: 1 — карданный вал коробки передач, $J=11,75~\mathrm{k\Gamma}.\mathrm{mm}^2;~2$ — карданный вал переднего моста, $J=27,34~\mathrm{k\Gamma}.\mathrm{mm}^2;~3$ — карданный вал без промежуточной опоры (промопоры), $J=23,36~\mathrm{k\Gamma}.\mathrm{mm}^2;~4$ — промопора; 5 — карданный вал заднего моста, $J=23,36~\mathrm{k\Gamma}.\mathrm{mm}^2$

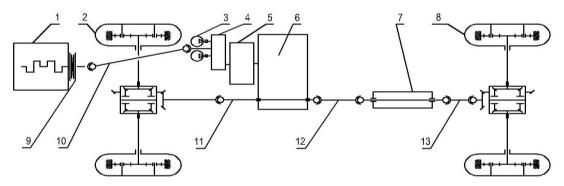


Рис. 8 — Кинематическая схема трансмиссии подземного самосвала БелАЗ-75800: 1 — ДВС; 2 — мост передний; 3 — насосы рулевого управления; 4 — передача согласующая; 5 — гидротрансформатор; 6 — коробка передач; 7 — промопора; 8 — мост задний; 9 — муфта демпферная; 10 — карданный вал коробки передач, J=11,75 кГ.мм²; 11 — карданный вал переднего моста, J=27,34 кГ.мм²; 12 — карданный вал, J=23,36 кГ.мм²; 13 — карданный вал заднего моста, J=23,36 кГ.мм²

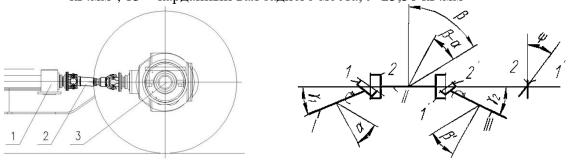


Рис. 9 — Схема двухшарнирной карданной передачи с обозначением углов: 1 — опора; 2— карданный вал; 3 — задний мост с колесами; углы — α , β , β' , γ_1 , γ_2 , ψ

Угол β' является функцией двух переменных α , γ_2 . Поэтому, полная производная по времени от (12) представляет собой сумму двух слагаемых

$$\frac{d\beta'}{dt} = \frac{\partial\beta'}{\partial\alpha} \cdot \frac{d\alpha}{dt} + \frac{\partial\beta'}{\partial\gamma_2} \cdot \frac{d\gamma_2}{dt} \,. \tag{13}$$

Найдем частные производные $\frac{\partial \beta'}{\partial \alpha}$, $\frac{\partial \beta'}{\partial \gamma_2}$ в (13):

$$\begin{split} \frac{\partial \beta'}{\partial \alpha} &= \frac{\cos \gamma_2 \cdot (1 + tg^2 \alpha) \cdot \frac{1 + tg^2 \psi}{\cos \gamma_1 - tg\alpha \cdot tg\psi + \cos^2 \gamma_2 \cdot tg\psi \cdot (tg\alpha + tg\psi \cdot \cos \gamma_1)}}{1 + \cos^2 \gamma_2 \cdot tg^2 \alpha \cdot \frac{(1 + tg^2 \psi)^2}{\left[\cos \gamma_1 - tg\alpha \cdot tg\psi + \cos^2 \gamma_2 \cdot tg\psi \cdot (tg\alpha + tg\psi \cdot \cos \gamma_1)\right]^2}} \\ &+ \frac{-\cos \gamma_2 \cdot tg\alpha \cdot \frac{1 + tg^2 \psi}{\left[\cos \gamma_1 - tg\alpha \cdot tg\psi + \cos^2 \gamma_2 \cdot tg\psi \cdot (tg\alpha + tg\psi \cdot \cos \gamma_1)\right]^2} \cdot \left[-(1 + tg^2 \alpha) \cdot tg\psi + \cos^2 \gamma_2 \cdot tg\psi \cdot (1 + tg^2 \alpha)\right]}{1 + \cos^2 \gamma_2 \cdot tg^2 \alpha \cdot \frac{(1 + tg^2 \psi)^2}{\left[\cos \gamma_1 - tg\alpha \cdot tg\psi + \cos^2 \gamma_2 \cdot tg\psi \cdot (tg\alpha + tg\psi \cdot \cos \gamma_1)\right]^2}}; \end{split}$$

$$\frac{\partial \beta'}{\partial \gamma_{2}} = \frac{-\sin \gamma_{2} \cdot tg\alpha \cdot \frac{1 + tg^{2}\psi}{\cos \gamma_{1} - tg\alpha \cdot tg\psi + \cos^{2} \gamma_{2} \cdot tg\psi \cdot (tg\alpha + tg\psi \cdot \cos \gamma_{1})}}{1 + \cos^{2} \gamma_{2} \cdot tg^{2}\alpha \cdot \frac{(1 + tg^{2}\psi)^{2}}{\left[\cos \gamma_{1} - tg\alpha \cdot tg\psi + \cos^{2} \gamma_{2} \cdot tg\psi \cdot (tg\alpha + tg\psi \cdot \cos \gamma_{1})\right]^{2}}} + \frac{2 \cdot \cos^{2} \gamma_{2} \cdot tg\alpha \cdot \frac{1 + tg^{2}\psi}{\left[\cos \gamma_{1} - tg\alpha \cdot tg\psi + \cos^{2} \gamma_{2} \cdot tg\psi \cdot (tg\alpha + tg\psi \cdot \cos \gamma_{1})\right]^{2}}}{1 + \cos^{2} \gamma_{2} \cdot tg^{2}\alpha \cdot \frac{(1 + tg^{2}\psi)^{2}}{\left[\cos \gamma_{1} - tg\alpha \cdot tg\psi + \cos^{2} \gamma_{2} \cdot tg\psi \cdot (tg\alpha + tg\psi \cdot \cos \gamma_{1})\right]^{2}}};$$

Введем замены:

 $L1(\alpha,\gamma_1,\gamma_2,\psi) = \frac{\partial\beta'}{\partial\alpha}, \ L2(\alpha,\gamma_1,\gamma_2,\psi) = \frac{\partial\beta'}{\partial\gamma_2}, \ \omega_3 = \frac{d\beta'}{dt} \ - \ \text{угловая скорость вращения вала}$ III; $\omega_1 = \frac{d\alpha}{dt} \ - \ \text{угловая скорость вала I}; \ \omega_{\gamma 2} = \frac{d\gamma_2}{dt} \ - \ \text{угловая скорость оси III при}$ переменном угле γ_2 .

Выражение (13) перепишем в виде:

$$\omega_3 = \omega_1 \cdot L1(\alpha, \gamma_1, \gamma_2, \psi) + \omega_{\gamma_2} \cdot L2(\alpha, \gamma_1, \gamma_2, \psi). \tag{14}$$

Определим угловое ускорение ведомого вала ε_3 , взяв полную производную по времени от левой и правой частей выражения (14):

$$\varepsilon_{3} = \frac{d\omega_{3}}{dt} = \varepsilon_{1} \cdot L1(\alpha, \gamma_{1}, \gamma_{2}, \psi) + \omega_{1} \cdot \left(\frac{\partial L1(\alpha, \gamma_{1}, \gamma_{2}, \psi)}{\partial \alpha} \cdot \omega_{1} + \frac{\partial L1(\alpha, \gamma_{1}, \gamma_{2}, \psi)}{\partial \gamma_{2}} \cdot \omega_{\gamma_{2}}\right) + \\
+ \varepsilon_{\gamma_{2}} \cdot L2(\alpha, \gamma_{1}, \gamma_{2}, \psi) + \omega_{\gamma_{2}} \cdot \left(\frac{\partial L2(\alpha, \gamma_{1}, \gamma_{2}, \psi)}{\partial \alpha} \cdot \omega_{1} + \frac{\partial L2(\alpha, \gamma_{1}, \gamma_{2}, \psi)}{\partial \gamma_{2}} \cdot \omega_{\gamma_{2}}\right), \tag{15}$$

где $\varepsilon_{_1}$ — угловое ускорение вала I; $\varepsilon_{_{\!\gamma 2}}$ — угловое ускорение оси III.

Для анализа выражения (9) необходимо рассмотреть четыре случая.

- 1. Первый $\varepsilon_1=0, \;\; \omega_{\gamma 2}=0.$ 2. Второй $\varepsilon_1=0, \;\; \omega_{\gamma 2}\neq 0.$
 - 2.1 Случай равномерного вращения $\varepsilon_{_{\gamma 2}} = 0$;
 - 2.2 Случай неравномерного вращения $\varepsilon_{\scriptscriptstyle \gamma 2} \neq 0$.
- 3. Третий $\varepsilon_1 \neq 0, \ \omega_{\gamma 2} = 0.$ 4. Четвертый $\varepsilon_1 \neq 0, \ \omega_{\gamma 2} \neq 0.$ 4. 1 $\varepsilon_{\gamma 2} = 0;$ 4. 2 $\varepsilon_{\gamma 2} \neq 0.$

В качестве примера рассмотрим четвертый случай.

Четвертый случай. Угловое ускорение входного вала $\varepsilon_1 = \frac{d\omega_1}{dt} \neq 0$ (входной вал вращается неравномерно), угловая скорость оси ІІІ $\omega_{\gamma 2} = \frac{d\gamma_2}{dt} \neq 0$ (при переменном угле γ_2 ось ІІІ подвижна).

В этом случае выражение (15) примет вид (16):

$$\varepsilon_{3} = \frac{d\omega_{3}}{dt} = \varepsilon_{1} \cdot L1(\alpha, \gamma_{1}, \gamma_{2}, \psi) + \omega_{1} \cdot (\frac{\partial L1(\alpha, \gamma_{1}, \gamma_{2}, \psi)}{\partial \alpha} \cdot \omega_{1} + \frac{\partial L1(\alpha, \gamma_{1}, \gamma_{2}, \psi)}{\partial \gamma_{2}} \cdot \omega_{\gamma_{2}}) + \\
+\varepsilon_{\gamma_{2}} \cdot L2(\alpha, \gamma_{1}, \gamma_{2}, \psi) + \omega_{\gamma_{2}} \cdot (\frac{\partial L2(\alpha, \gamma_{1}, \gamma_{2}, \psi)}{\partial \alpha} \cdot \omega_{1} + \frac{\partial L2(\alpha, \gamma_{1}, \gamma_{2}, \psi)}{\partial \gamma_{2}} \cdot \omega_{\gamma_{2}})$$

$$\frac{2 \cdot 10^{4}}{3} - \frac{2 \cdot 10^{4}}{3} \cdot \frac{2 \cdot$$

Рис. 10 – График зависимости углового ускорения $\varepsilon 3$ _4 в функции угла излома γ_2 при различных значениях угла α : $\alpha = \frac{\pi}{6}$; $\frac{\pi}{2}$; $\frac{2\pi}{3}$; угла γ_1 : $\gamma_1 = 0.035$; 0.087; 0.174 pad (2°; 5°; 10°) и угла ψ : $\psi = 0.0175$; 0.035; 0.087 pad (1°; 2°; 5°)

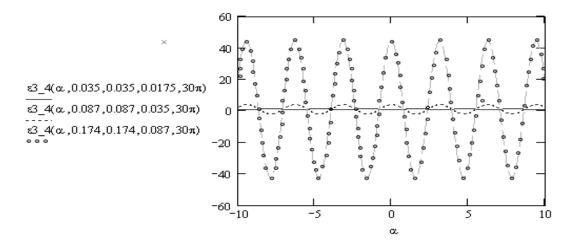


Рис. 11 — График зависимости углового ускорения $\varepsilon 3$ _4 в функции угла α при различных значениях угла γ_1 : $\gamma_1 = 0.035$; 0.087; 0.174 pad $(2^{\circ}; 5^{\circ}; 10^{\circ})$; угла γ_2 : $\gamma_2 = 0.035$; 0.087; 0.174 pad $(2^{\circ}; 5^{\circ}; 10^{\circ})$ и угла ψ : $\psi = 0.0175$; 0.035; 0.087 pad $(1^{\circ}; 2^{\circ}; 5^{\circ})$

Величина углового ускорения выходного вала III карданной передачи сильно зависит от двух углов: от угла излома вала III — γ_2 ; от угла между вилками 2 и 1, расположенными на валу II — ψ (см. рис. 2).

Угловое ускорение вала III в функции двух углов создает дополнительный вращающий момент $M_2 = M_2(\gamma_2, \psi)$ на ведущих колесах автомобиля, который

вращающимся колесам придает ещё и осциллирующее движение относительно их осей вращения $M_2(\gamma_2, \psi) = I_x. \varepsilon_3.$

В результате суммарный момент М2 на колесе примет вид (17):

$$M2 = M\kappa p + M_2(\gamma_2, \psi), \tag{17}$$

где Мкр – крутящий момент на входном валу вилки кардана (см. рис. 2).

Знание величины углового ускорения вала III в функции двух углов позволяет проводить расчеты, связанные с динамикой деталей трансмиссии и колес автомобиля.

Заключение. В работе получены следующие результаты:

- 1. Формализованы зависимости углового ускорения выходных валов карданных передач: ε_2 вала II (рис. 2) в функции угла излома α ; ε_3 вала III (рис. 9) в функции двух углов γ_2 , ψ (в литературе таких зависимостей нет).
- 2. Определены дополнительные вращающие моменты: $M_1(\alpha)$ в функции углового ускорения ε_2 и угла излома α (для одношарнирной карданной передачи); $M_2(\gamma_2, \psi)$ в функции углового ускорения ε_3 и двух углов γ_2, ψ (для двухшарнирной карданной передачи).

Выводы. Дополнительные вращающие моменты: вращающимся колесам с шинами сообщают колебательные движения относительно их осей вращения; у различных конструкций машин при определенных режимах работы и на разных передачах могут достигать значительных величин; генерируют вибрации деталей трансмиссии, колес и машины в целом, что уменьшает срок службы транспортного средства.

При проектировании колесного транспортного средства необходимо:

во-первых, рассчитать величины углового ускорения ε_2 в функции угла излома α одношарнирной карданной передачи, ε_3 в функции двух углов — γ_2 , ψ двухшарнирной карданной передачи и дополнительных вращающих моментов $M_1(\alpha)$ и $M_2(\gamma_2,\psi)$ на разных передачах;

во-вторых, выполнить расчеты, связанные с выбором схемы и с нагрузочными режимами карданных передач, с динамикой деталей трансмиссии, колес и автомобиля в целом.

Ввести результаты данных исследований в курсы лекций и практических занятий для студентов и курсантов технических вузов по дисциплинам «Конструирование и расчет деталей транспортных средств» и «Теория мобильных машин».

ЛИТЕРАТУРА

1. Лойцянский, Л.Г. Курс теоретической механики: В 2-х томах. Т.І. Статика и кинематика // Л.Г. Лойцянский, А.И. Лурье / М.: Наука, Главная редакция физико-математической литературы, 1982. — 352 с. 2. Лойцянский, Л.Г. Курс теоретической механики: В 2-х томах. Т.ІІ. Динамика // Л.Г. Лойцянский, А.И. Лурье / М.: Наука, Главная редакция физико-математической литературы, 1983. — 640 с. 3. Малаховский, Я.Э. Карданные передачи // Я.Э. Малаховский, А.А. Лапин, Н.К.Веденеев / М.: 1962. — 155с. 4. Артоболевский, И.И. Теория механизмов и машин // И.И. Артоболевский / М.: «Наука» 1988. — 639с. 5. Островерхов, Н.Л. Динамическая нагруженность трансмиссий колесных машин // Н.Л. Островерхов, И.К. Русецкий, Л.И. Бойко / Мн.: Наука и техника. — 1977. — 191с. 6. Проектирование универсальных шарниров и ведущих мостов. Пер. с англ. Ю.В. Попова. — Л.: Машиностроение. — 1984. — 463 с. 7. Бойко, Л.И. Механика приводов колеблющихся рабочих органов машин // Л.И Бойко / — Мн.: ООО «Мэджик Бук». — 2003. — 239 с.