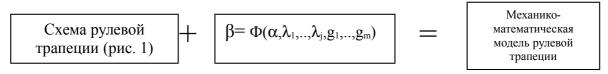
Гурвич Юрий Абрамович (Gurvich Yuriy

Abramovich): Республика Беларусь, г. Минск, Белорусский Национальный Технический Университет, кандидат технических наук, доцент кафедры "Теоретическая механика", доцент

Разработка механико-математической модели новой рулевой трапеции автобуса «МАЗ»

УДК 531.2.3.114:371.3

Под механико-математической моделью понимается совокупность схемы рулевой трапеции и формализованной связи (математического описания $\beta = \Phi(\alpha, \lambda_1, ..., \lambda_j, g_1, ..., g_m)$, где β – угол поворота внешнего управляемого колеса машины; α - угол поворота внутреннего колеса; λ_1 , ..., λ_j – управляемые параметры; j – количество управляемых параметров; $g_1, ..., g_m$ – неуправляемые параметры; m- количество неуправляемых параметров.



В литературе приведено большое число различных конструкций рулевых трапеций, которые используются в машинах на пневмоколесном ходу. Соответственно приведены схемы этих рулевых трапеций. Известна только одна механико-математическая модель — модель четырехзвенной неразрезной рулевой трапеции, впервые полученная академиком Е.А. Чудаковым [1]. Для всех остальных конструкций рулевых трапеций приведены только схемы, а математические описания β = $\Phi(\alpha, \lambda_1, ..., \lambda_j, g_1, ..., g_m)$ отсутствуют. Причём для каждой новой конструкции рулевой трапеции будет свое число звеньев и своя совокупность конструктивных параметров.

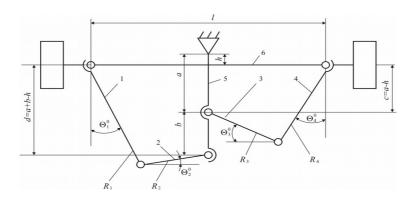


Рис. 1. Схема несимметричной шестизвенной рулевой трапеции автобуса «МАЗ», колеса которого находятся в нейтральном положении

Постановка задачи. Для расчета параметров шестизвенной рулевой трапеции изображенной на рис.1 необходимо формализовать связь угла поворота наружного колеса β от угла поворота внутреннего колеса α и других управляемых и неуправляемых (конструктивных) параметров $\beta = \beta(\alpha, \lambda_1, ..., \lambda_i, g_1, ..., g_m)$.

На рисунке 1 изображена новая шестизвенная рулевая трапеция автобуса «МАЗ» в исходном положении. На этом рисунке пронумерованы длины стержней 1-5 соответственно через R_1 - R_5 , R_5 = a+b, L = 2l, а углы, определяющие направление стержней в начальном положении (до поворота рулевого колеса), обозначены индексом «0»: Θ_1^0 , Θ_2^0 , Θ_3^0 , Θ_4^0 .

При повороте рулевого колеса автобуса углы Θ_1^0 , Θ_2^0 , Θ_3^0 , Θ_4^0 станут другими, и появится угол наклона стержня 5 к вертикали. Обозначим угол, определяющий направления стержней 1-5 в ненулевом положении Θ_1 , Θ_2 , Θ_3 , Θ_4 , Θ_5 (Рис. 2).

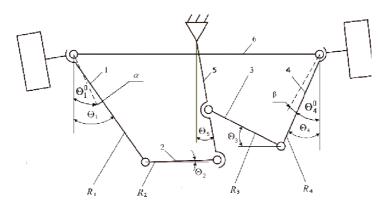


Рис. 2. Схема несимметричной шестизвенной рулевой трапеции автобуса «МАЗ», колеса которого находятся в повернутом положении

Штриховыми линиями на рис. 2 показаны начальные положения стержней 1 и 5. При повороте управляемого внутреннего колеса автобуса влево на угол α стержни 1, 4 и 5 будут вращаться против часовой стрелки, а углы Θ_1 и Θ_4 будут соответственно равны: $\Theta_1 = \Theta_1^0 + \alpha$, $\Theta_4 = \Theta_4^0 - \beta$, $\alpha = \Theta_1 - \Theta_1^0$, $\beta = \Theta_4^0 + \Theta_4$.

Для расчета параметров шестизвенной рулевой трапеции требуется определить зависимость угла поворота наружного колеса β от угла поворота внутреннего колеса β = $\beta(\alpha,\lambda_1,...,\lambda_j,g_1,...,g_m)$ и других конструктивных параметров, что эквивалентно определению Θ_4 = $\Theta_4(\Theta_1)$.

Определение начальных углов Θ^0_1 и Θ^0_4

Определение Θ_1^0 . Рассматриваем часть трапеции левее стержня 5 (Рис. 1).

Система (1) — это система уравнений с двумя неизвестными Θ_1^0 и Θ_2^0 . Из (1) исключим Θ_2^0 и обозначим b+a-h=d . Получим:

$$\begin{cases}
l - R_1 \sin \Theta_1^0 = R_2 \cos \Theta_2^0, \\
R_1 \cos \Theta_1^0 - d = R_2 \sin \Theta_2^0.
\end{cases}$$
(2)

Возводим в квадрат уравнения (2) и складываем их. В результате получим:

$$l\sin\Theta_1^0 + d\cos\Theta_1^0 = \frac{l^2 + R_1^2 + d^2 - R_2^2}{2R_1}.$$
 (3)

Введем угол μ_1 следующим образом:

$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} = -, \qquad A_1 = \sqrt{l^2 + d^2}, \quad \mu_1 = \operatorname{arctg} \frac{d}{l}.$$

Преобразуем выражение (3):

$$\Theta_1^0 = \arcsin \frac{l^2 + R_1^2 + d^2 - R_2^2}{2R_1\sqrt{l^2 + d^2}} - \operatorname{arctg} \frac{d}{l}$$
.

Определение Θ_4^0 . Рассматриваем часть трапеции правее стержня 5 (Рис. 1).

Из (4) исключим Θ_3^0 и обозначим c=d-b=a-h . Получим:

$$\begin{array}{l}
R_3 \cos \Theta_3^0 = l - R_4 \sin \Theta_4^0, \\
R_3 \sin \Theta_3^0 = R_4 \cos \Theta_4^0 - c.
\end{array}$$

Исключим из уравнений (5) Θ_3^0 , возведем их в квадрат и сложим:

$$l\sin\Theta_4^0 + c\cos\Theta_4^0 = \frac{l^2 + R_4^2 + c^2 - R_3^2}{2R_4}.$$
 (6)

Введем угол μ_2 следующим образом:

Преобразуем выражение (6):

$$\Theta_4^0 = \arcsin \frac{l^2 + R_4^2 + c^2 - R_3^2}{2R_4\sqrt{l^2 + c^2}} - \operatorname{arctg} \frac{c}{l}$$
.

Определение зависимости $\Theta_4 = \Theta_4(\Theta_1)$

Определение зависимости между Θ_1 u Θ_5 . Рассматриваем левую часть трапеции (левее стержня 5).

Из выражений (7) исключим Θ_2 , возведем их в квадрат и сложим:

$$2(a+b)(R_1\cos\Theta_1 + h)\cos\Theta_5 - 2(a+b)(l - R_1\sin\Theta_1)\sin\Theta_5 =
= l^2 + (a+b)^2 + R_1^2 + h^2 - R_2^2 - 2lR_1\sin\Theta_1 + 2hR_1\cos\Theta_1.$$
(8)

Определение зависимости между_ Θ_4 и Θ_5 .

Связи:
$$\begin{bmatrix} a\sin\Theta_5 + R_3\cos\Theta_3 + R_4\sin\Theta_4 = l, \\ h - a\cos\Theta_5 - R_3\sin\Theta_3 + R_4\cos\Theta_4 = 0. \end{cases}$$
 (9)

Из (8) исключим Θ_3 , возведем полученные уравнения в квадрат и сложим их:

$$2a(R_4\cos\Theta_4 + h)\cos\Theta_5 - 2a(l - R_4\sin\Theta_4)\sin\Theta_5 =$$

$$= l^2 + a^2 + R_4^2 + h^2 - R_3^2 - 2lR_4\sin\Theta_4 + 2hR_4\cos\Theta_4.$$
(10)

Исключим Θ_5 из уравнений (8) и (10). Уравнение (8) перепишем следующим образом:

$$(R_1 \cos \Theta_1 + h) \cos \Theta_5 - (l - R_1 \sin \Theta_1) \sin \Theta_5 =$$

$$= \frac{1}{2(a+b)} [l^2 + (a+b)^2 + R_1^2 + h^2 + R_2^2 - 2lR_1 \sin \Theta_1 + 2hR_1 \cos \Theta_1]$$
 (11)

Введем переменную амплитуду A_1 и $\mu_1(\Theta_1)$:

$$A_{1}(\Theta_{1}) = \sqrt{(R_{1}\cos\Theta_{1} + h)^{2} + (l - R_{1}\sin\Theta_{1})^{2}}$$
 (12)

и примем, что

$$(R_1 \cos \Theta_1 + h) = A_1(\Theta_1) \sin \mu_1(\Theta_1),$$

$$(l - R_1 \sin \Theta_1) = A_1(\Theta_1) \cos \mu_1(\Theta_1).$$
Тогда
$$\mu_1(\Theta_1) = arctg \frac{R_1 \cos \Theta_1 + h}{l - R_1 \sin \Theta_1}.$$
(13)

Преобразуем уравнение (11) и выразим из него Θ_5 :

$$\Theta_5 = \mu_1(\Theta_1) - \arcsin \frac{1}{2(a+b)} \cdot \frac{l^2 + (a+b)^2 + R_1^2 + h^2 - 2lR_1 \sin \Theta_1 + 2hR_1 \cos \Theta_1}{A_1(\Theta_1)}.$$

Окончательно $\Theta_5 = \Theta_5(\Theta_1)$:

$$\Theta_5 = \operatorname{arctg} \frac{R_1 \cos \Theta_1 + h}{l - R_1 \sin \Theta_1}$$

$$-\arcsin\frac{l^2 + (a+b)^2 + R_1^2 + h^2 - R_2^2 - 2lR_1\sin\Theta_1 + 2hR_1\cos\Theta_1}{2(a+b)\sqrt{(R_1\cos\Theta_1 + h)^2 + (l - R_1\sin\Theta_1)^2}}.$$
(14)

Преобразуем уравнение (10) таким образом:

$$\cos\Theta_{4}(2aR_{4}\cos\Theta_{5} - 2hR_{4}) + \sin\Theta_{4}(2aR_{4}\sin\Theta_{5} + 2lR_{4}) =$$

$$= l^{2} + a^{2} + R_{4}^{2} + h^{2} - R_{3}^{2} - 2ah\cos\Theta_{5} + 2al\sin\Theta_{5},$$

или (делим на $2R_4$):

$$(a\cos\Theta_5 - h)\cos\Theta_4 + (a\sin\Theta_5 + l)\sin\Theta_4 =$$

$$= \frac{l^2 + a^2 + R_4^2 + h^2 - R_3^2 - 2ah\cos\Theta_5 + 2al\sin\Theta_5}{2R_4}.$$
(15)

Вводим $\mu_2(\Theta_5)$ и переменную амплитуду

$$A_{2}(\Theta_{5}) = \sqrt{(a\cos\Theta_{5} - h)^{2} + (a\sin\Theta_{5} + l)^{2}},$$
(16)

$$\begin{bmatrix} a\cos\theta_{\varsigma} \cdot h = A_{2}(\theta_{\varsigma})\sin\mu_{2}(\theta_{\varsigma}) \\ 0 \end{bmatrix} \Rightarrow tg\mu_{2}(\theta_{\varsigma}) = \frac{a\cos\theta_{\varsigma} \cdot h}{a\sin\theta_{\varsigma} + l},$$

$$\mu_2(\Theta_5) = \operatorname{arctg} \frac{a \cos \Theta_5 - h}{a \sin \Theta_5 + l}$$

Преобразуем уравнение (15) и выразим из него Θ_4 :

$$\Theta_4 = \arcsin(\frac{1}{2R_4 A_2(\Theta_5)} (l^2 + a^2 + R_4^2 + h^2 - R_3^2 - 2ah\cos\Theta_5 + 2al\sin\Theta_5)) - \mu_2(\Theta_5), \qquad (17)$$

где Θ_5 определяется по формуле (14).

В итоге зависимость угла поворота наружного колеса β от угла

поворота внутреннего колеса
$$\beta = \beta(\alpha, \lambda_1, ..., \lambda_j, g_1, ..., g_m)$$
 примет вид:
$$\beta = \Theta_4^0 - \arcsin \frac{l^2 + a^2 + R_4^2 + h^2 - R_3^2 - 2ah\cos\Theta_5 + 2al\sin\Theta_5}{2R_4\sqrt{(a\cos\Theta_5 - h)^2 + (a\sin\Theta_5 + l)^2}} + arctg \frac{a\cos\Theta_5 - h}{a\sin\Theta_5 + l},$$
 где
$$\Theta_4^0 = arctg \frac{l^2 + R_4^2 + c^2 - R_3^2}{2R_4\sqrt{l^2 + c^2}} - arctg \frac{c}{l},$$

$$\Theta_5 = \operatorname{arctg} \frac{R_1\cos(\Theta_1^0 + \alpha) + h}{l - R_1(\Theta_1^0 + \alpha)} - \operatorname{arcsin} \frac{l^2 + (a+b)^2 + R_1^2 + h^2 - R_2^2 - 2lR_1\sin(\Theta_1^0 + \alpha) + 2hR_1\cos(\Theta_1^0 + \alpha)}{2(a+b)\sqrt{(R_1\cos(\Theta_1^0 + \alpha) + h)^2 + (l - R_1\sin(\Theta_1^0 + \alpha))^2}},$$

где

$$\Theta_1^0 = \arcsin \frac{l^2 + R_1^2 + d^2 - R_2^2}{2R_1\sqrt{l^2 + d^2}} - arctg \frac{d}{l}$$
.

Эта рулевая трапеция содержит двенадцать конструктивных параметров: $1, R_1, R_2, R_3, R_4, R_5 = a + b, a, b, h, \Theta_1^0, \Theta_2^0, \Theta_3^0, \Theta_4^0$, в том числе восемь независимых— $(l, R_1, R_2, R_3, R_4, a, b, h)$.

ЛИТЕРАТУРА

1. Чудаков Е. А. Теория автомобиля. – М.: Изд. АН СССР, 1961.-462с.